Pulmonary Langerhans Cell Histiocytosis

What's the News ?

Anja C. Roden, M.D.

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA

CHET MANYO CLL

Outline - PLCH

- Introduction
- Diagnosis
 - Clinical findings
 - Histologic features, IHC
 - Role of biopsy in diagnosis
- Pulmonary hypertension
- Outcome and treatment
- Pathogenesis
- Summary
- T MAYO CLINIC

Paul Langerhans (1847-1888)

- · German pathologist, physiologist, biologist
- Langerhans cells in the skin

 Islets of Langerhans in pancreas

MAYO CLINIC

Sholles J. J Clin Pathol. 2002;55:243.

Langerhans Cell Histiocytosis

- Rare histiocytic disorder with Langerhans cell (LC) phenotype
- LC = Dendritic cells in skin, mucosa (S100+, CD1a+, Langerin+, BG)

- Skin LC ≠ cell of origin for LCH (molecular)
- Myeloid DC = cell of origin (expresses same antigens as skin LC)

Pulmonary vs Systemic LCH

LCH	Pulmonary	Systemic
Incidence	4-5% of bxs for diffuse lung disease	3-5/Mio/year (children)
Age	Adults 2 nd -4 th decade	Children (1-3 y.o.) but any age
Sex	No predilection	?male
Smoking	>90%	Present / absent
C MANO CLIMIC		

PLCH - Clinical Presentation

- · Incidental finding on chest radiograph
- Respiratory and/or constitutional symptoms
- Spontaneous pneumothorax (15%)
- Symptoms due to extra-pulmonary disease (polyuria, polydipsia, pain, skin rash) (10-15%)
- Hemoptysis uncommon (other diagnosis?)

PD MAKO CLI

HR-CT

- Bronchiolocentric lesions in upper-middle lungs; relative sparing of lung bases
- Early: Bronchiolocentric nodules +/- GGO
- Advanced: Cysts
 - Paracicatricial emphysema
- End stage: Fibrocystic
- FDG-PET uptake in 45% of patients (early)

Castoldi MC et al. Insights Imaging 2014;5:483-92.

Explants for Advanced PLCH

Role of Bx in diagnosis of PLCH

- 38 patients with PLCH
- Diagnosis established by

50% - TBBx

- 45% Surgical lung biopsy (all had prior non-diagnostic TBBx)
- 11% Bx of extrapulm site and/or
- 8% BAL

Baqir m et al. J Bronchol Intervent Pulmonol. 2013;20:309-12

BAL in diagnosis of PLCH

- ≥ 5% CD1a+ cells = probably diagnostic but infrequent
- Can be difficult in practice (infrequent use
 → problems with associated costs and
 quality assurance)

Cryobiopsies - might be promising

More to come

Immunohistochemistry of LCs

IHC of LCs				
Diagnosis	S100	CD1a	Langerin	
(n=10)	Mean # Cells per HPF			
PLCH, lesion	> 100 (39->100)	> 100 (37->100)	> 100 (37->100)	
Uninvolved lung	12 (4-50)	7 (4-40)	9 (4-25)	
Sholl L et al. Am J Surg Pathol. 2007;31:947-52				

IHC of LCs

- Langerin LC-specific, initiates Birbeck granule formation
- CD1a, Langerin more specific than S100
- CD1a: 94 100% sensitivity in comparison to Langerin in PLCH

Sholl L et al. Am J Surg Pathol. 2007;31:947-52 Lau SK et al. Am J Surg Pathol. 2008; 32:615-9.

Pulmonary Hypertension in PLCH

- Common & severe, no predictors for PHT
- Echo study: 15/17 pts PASP >35 mmHg
- 92%–100% in advanced PLCH-patients
- Associated with ↑ mortality
- Severity not correlated with lung function
- Severe PHT not limited to end-stage PLCH

Lahm T et al. Clin Chest Med. 2013. 34:753-778. Chaowalit N et al. Mayo Clin Proc 2004;79:1269-75. Dauriat G et al. Transplantation. 2006; 81:746-50 Fartoukh M et al. Respir Crit Care Med. 2000; 161:216-23.

5th World Symposium – 2013 Current Classification of PHT

- 1. Pulmonary arterial hypertension (PAH)
- 1' PVOD and/or PCH
- 1" Persistent PHT of the newborn
- 2. PHT due to left heart disease
- 3. PHT due to lung diseases and/or hypoxia
- 4. Chronic thromboembolic PHT
- 5. PHT with unclear multifactorial mechanisms
 - Simonneau G et al. 2013. J Am Coll Cardiol. 62. D34-41.

PHT in PLCH

- Pulmonary arterial and venous changes
- PA Diffuse medial hypertrophy
 - Intimal fibrosis and/or proliferation
- PV Intimal fibrosis, muscularization
- PVOD-like disease in 1/3 of specimens
- Vascular changes also frequently in regions not affected by PLCH lesions

Fartoukh M et al. Am J Respir Crit Care Med. 2000. 161:210-23.

Pathogenesis of PHT in PLCH

- Not well understood.
- LCs infiltrate walls of small & medium-sized PAs in prominent PLCH nodules
- → Specific pulmonary vasculopathy?

Pathogenesis of PHT in PLCH

- Cytokines, growth factors released by PLCH nodules (IL-1, IL-6, TGFβ, PDGF)
 → Diffuse pulmonary vascular remodeling
- No correlation PFT and hemodynamics
 - \rightarrow PHT unlikely due to hypoxemia, or cystic destruction.
- Cigarette smoke known inducer of pulmonary vascular remodeling

Lahm T et al. Clin Chest Med. 2013. 34:753-778.

Prognosis of PLCH

- Progressive, stable or resolve unpredictable even after smoking cessation
- 5-yr survival estimate \geq 73%
- Recurrent pneumothorax (15-25%)
- 1/3-1/2 of death due to respiratory failure
- No markers to predict prognosis or behavior
- ↑ Secondary malignancies (hematologic, lung Ca, carcinoid tumor)

The wave crime

Pathogenesis - PLCH

Largely unknown

Langerhans cells = sub-population of DCs

- · Mucosa of tracheobronchial tree
- Primary line of defense, survey inhaled antigens
- Danger signals (Toll-like receptors on infectious pathogens; factors released by injured or necrotic cells) → Activation of LC

Suri HS et al. Orphanet J Rare Dis. 2012;7:16

Pathogenesis - PLCH

Immune modulated?

LC nodules with inflammatory cells (eos, T_{reg}, activated macrophages)

Abnormalities in systemic immune function

Suri HS et al. Orphanet J Rare Dis. 1012;7:16

Cigarette Smoking & PLCH

- <u>
 Bombesin-like peptide
 </u>
 - Chemotactic for monocytes
 - Stimulate cytokine secretion
- ↑ <u>Osteopontin</u>
 - Chemotactic LCs & DCs
- <u>Tobacco glycoprotein</u> (in tobacco)
 - Induces lymphocyte differentiation and lymphokine production

Suri HS et al. Orphanet J Rare Dis. 2012;7:16

Cigarette Smoking & PLCH

- May <u>alter turnover of DC in lung or facilitate</u> <u>recruitment of LC and DC precursors</u>
 - [↑] LCs in other lung diseases of smokers (COPD, certain ILDs, lung Ca)
- Might <u>promote</u> DC and LC <u>differentiation</u>, <u>activation</u> and <u>survival</u> by
 - Cytokines for recruitment and activation of LC & DC
 - Anti-apoptotic Bcl-xL

Pathogenesis of PLCH

- Only a few smokers develop PLCH
 - Second hit by host factors
 - Exogenous factors /insult (virus) ?
 - Failure of anti-inflammatory reaction ?
- · Clinical spectrum of PLCH seems diverse
 - Many have favorable prognosis +/smoking cessation
 - Subset has poor prognosis

The state of the

- PLCH thought to be smoking-related, nonneoplastic
- Systemic LCH no inciting agent identified
- Systemic LCH Clonality of LCs described in 1994
- BRAF V600E mutations in 38-57% of systemic LCH by PCR → at least subset of LCH might be myeloid neoplasm

Willman CL et al. N Engl J Med. 1994;331:154-60

BRAF

- BRAF Mutations malignant (melanoma, colonic & lung adenoCa, papillary thyroid carcinoma) and benign (nevi) tumors
- 22 PLCH-nodules from 5 patients, NGS
 - *BRAF* V600E mutation in all nodules from 2 (of 5, 40%) pts
 - no mutations in any nodule of 3 pts
- \rightarrow PLCH clonal process ?

Yousem SA et al. 2013. Chest;143:1679-84.

BRAF-Expression in PLCH				
BRAF V600E Expression	PLCH (n=25)	Extrapulmonary LCH (n=54)		
% positive cases	28	35		
Mean Pack Years of Smoking				
BRAF positive cases	48.3	8.9		
BRAF negative cases	23.7 P=0.012	11.3 P=0.867		

BRAF Mutations in PLCH

- PCR (mutation) vs IHC (protein expression) discordant in n=3 (of 68, 4.4%):
 - 2 bone bxs: PCR positive, IHC negative;
 - 1 PLCH bx: PCR wt, IHC positive
- → IHC correlates with mutation status in most cases

Roden AC et al. 2014. Am J Surg. Pathol;38:548-51.

PLCH – What's New ?

- CD1a & Langerin are good markers
- PHT common and severe
- Pathogenesis of PLCH related to host and smoking-related immune modulation ?
- A subset of PLCH might be clonal
- BRAF expression associated with smoking
- BRAF targeted therapy might be useful

T MAYO CLINIC

